Maximality and Ultracompleteness in Normed Modules1

نویسنده

  • ISIDORE FLEISCHER
چکیده

1. What follows is a drastically stripped down version of a paper completed several years ago. The original intention was to present a careful treatment of the developments centering around the maximally concept in classical valuation theory, using modern ideas and the natural setting of an additive group, and to apply the resulting theory to systematize and simplify some recent investigations into ordered groups. The various referees through whose hands the paper has since passed have finally succeeded in convincing the writer that there is insufficient interest in such a project to justify publication. Accordingly the present version confines itself strictly to an account of the new results obtained. Even before the first submission of this paper, there had appeared an article by Conrad [C] in which ordered groups are handled from the valuation standpoint, but which does not specifically make use of techniques from valuation theory. Subsequently, while this paper was bottled up in the refereeing process, Gravett [G] rederived Conrad's results, at least for the case of interest here, by generalizing the appropriate valuation theoretic arguments. What is still new in the present paper is the example of a nonunique maximal immediate extension, and the study of normed spaces over fields with a valuation, which can be used to treat ordered spaces over ordered fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On certain maximality principles

‎We present streamlined proofs of certain maximality principles studied by Hamkins‎ ‎and Woodin‎. ‎Moreover‎, ‎we formulate an intermediate maximality principle‎, ‎which is‎ ‎shown here to be equiconsistent with the existence of a weakly compact cardinal $kappa$ such that $V_{kappa}prec V$‎.

متن کامل

REMOTAL CENTERS AND CHEBYSHEV CENITERS IN NORMED SPACES

In this paper, we consider Nearest points" and Farthestpoints" in normed linear spaces. For normed space (X; ∥:∥), the set W subset X,we dene Pg; Fg;Rg where g 2 W. We obtion results about on Pg; Fg;Rg. Wend new results on Chebyshev centers in normed spaces. In nally we deneremotal center in normed spaces.

متن کامل

Statistical uniform convergence in $2$-normed spaces

 The concept of statistical convergence in $2$-normed spaces for double sequence was introduced in [S. Sarabadan and S. Talebi, {it Statistical convergence of double sequences  in $2$-normed spaces }, Int. J. Contemp. Math. Sci. 6 (2011) 373--380]. In the first, we introduce concept strongly statistical convergence in $2$-normed spaces and generalize some results. Moreover,  we define the conce...

متن کامل

Diameter Approximate Best Proximity Pair in Fuzzy Normed Spaces

The main purpose of this paper is to study the approximate best proximity pair of cyclic maps and their diameter in fuzzy normed spaces defined by Bag and Samanta. First, approximate best point proximity points on fuzzy normed linear spaces are defined and four general lemmas are given regarding approximate fixed point and approximate best proximity pair of cyclic maps on fuzzy normed spaces. U...

متن کامل

w_0-Nearest Points and w_0-Farthest Point in Normed Linear Spaces

w0-Nearest Points and w0-Farthest Point in Normed Linear Spaces

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010